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Community genetics: what have we
accomplished and where should

we be going?
Erika I. Hersch-Green*, Nash E. Turley and Marc T. J. Johnson

Department of Plant Biology, North Carolina State University, PO Box 7612, Raleigh, NC 27695, USA

Research in community genetics seeks to understand how the dynamic interplay between ecology
and evolution shapes simple and complex communities and ecosystems. A community genetics per-
spective, however, may not be necessary or informative for all studies and systems. To better
understand when and how intraspecific genetic variation and microevolution are important in com-
munity and ecosystem ecology, we suggest future research should focus on three areas:
(i) determining the relative importance of intraspecific genetic variation compared with other eco-
logical factors in mediating community and ecosystem properties; (ii) understanding the
importance of microevolution in shaping ecological dynamics in multi-trophic communities; and
(iii) deciphering the phenotypic and associated genetic mechanisms that drive community and
ecosystem processes. Here, we identify key areas of research that will increase our understanding
of the ecology and evolution of complex communities but that are currently missing in community
genetics. We then suggest experiments designed to meet these current gaps.

Keywords: coevolution; community and ecosystem ecology; ecological genomics;
extended phenotype; functional genomics; intraspecific genetic variation
1. INTRODUCTION
The fields of evolutionary ecology and ecological gen-
etics have long sought to unify ecology and evolution
into a single discipline to gain greater insights into
the factors that influence the abundance and pheno-
typic diversity within and among species [1,2].
Historically, this effort focused on individual species
and populations, but more recent studies in ‘commu-
nity genetics’ and related disciplines recognize that it
might be necessary to unite the diverse theories,
concepts and techniques employed in community
ecology, evolutionary biology, genetics and genomics
to understand the ecology and evolution of interactions
among species within communities [3–7]. Community
genetics has lured many biologists with diverse interests
with the hope that a successful unification of these seem-
ingly disparate fields will bring novel insight and
greater predictive power to address basic and applied
problems in biology. Here, we consider the progress
towards this goal and existing gaps in our knowledge.
We then suggest several specific avenues for future
research that we feel will be most important in
advancing the field of community genetics.

Community genetics as a discipline was first articu-
lated by Antonovics [3], who called for the formation
of a new subdiscipline within evolutionary ecology that
would ‘emphasize the analysis of evolutionary genetic
r for correspondence (erikahersch@gmail.com).
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processes that occur among interacting populations
in communities’. Although similar ideas had been
articulated [2,8,9], it was Antonovics’ compelling
arguments and examples that have lead to the
explosion of interest into questions that bridge com-
munity ecology and evolutionary biology. Eighteen
years after the introduction of the term, there is still
confusion as to what community genetics entails.
We operationally define community genetics as: the
study of the dynamic interplay between ecology and
evolution among multiple interacting populations.
Thus, community genetics allows us to understand
how intraspecific genetic variation, evolution and
abiotic and biotic environmental factors influence
natural selection, species interactions, community
composition and ecosystem processes.

The first generation of studies under the moniker of
community genetics largely focused on the role that
genetic variation in basal plant populations has for
associated arthropod and plant communities (see
reviews [10–14]). These studies provide clear sup-
port for the hypothesis that intraspecific genetic
variation and population-level genotypic diversity can
have cascading effects on communities and eco-
systems. For instance, genetic differences among
individual plants (i.e. the effects of genotype identity)
can alter the abundance, composition and diversity
of herbivorous and predaceous arthropod species
[15–21], the performance and coexistence of compet-
ing plant species [22–25] and the flow of energy and
nutrients through ecosystems [26–30]. At the patch
and population level, increasing genetic diversity
This journal is q 2011 The Royal Society
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Figure 1. The number of publications listed in web of science

related to ecology that contain the phrase ‘community
genetic’ or ‘eco-evolutionary dynamic’ in the title, abstract
or keywords.

1454 E. I. Hersch-Green et al. Review. Future directions of community genetics

 on March 28, 2011rstb.royalsocietypublishing.orgDownloaded from 
(e.g. number of genotypes) increases diversity of
associated arthropod communities, confers greater
resilience to biotic and abiotic stressors, and affects
key aspects of ecosystem function [21,27,28,31–35].
Recently, studies have begun to extend the scope of
community genetics research to examine how genetic
variation and population divergence within herbivor-
ous insects, endosymbionts [36–38] and predaceous
fishes [39–42] have cascading bottom-up and top-
down effects within communities. And finally, a
related area of research labelled ‘eco-evolutionary
dynamics’ has shown that evolution within prey popu-
lations can influence predator–prey dynamics within
microcosms [43–45].

Given the growing interest and rapid advancements
on this topic (figure 1), we think it is now important to
ask: is a community genetics perspective needed in
biology and does it bring novel insight and greater pre-
dictive power to answering basic and applied problems
in biology? Community genetics research has shown
that such an integrative approach could be important
in understanding the ecology and evolution of species
and communities in nature, but there still remain large
gaps in our knowledge. To address these gaps and to
assess whether and when a community genetics per-
spective is helpful, we suggest that future research
should address three specific questions:

— What is the relative importance of intraspecific
genetic variation compared with other ecological
factors in affecting the structure and dynamics of
communities?

— How do microevolutionary processes influence
community ecology?

— What are the phenotypic and genetic mechanisms
affecting community and ecosystem processes?

2. WHAT IS THE RELATIVE IMPORTANCE OF
INTRASPECIFIC GENETIC VARIATION?
It is currently unclear whether a community genetics
framework is needed to explain patterns and processes
within community ecology [46,47]. This may seem
Phil. Trans. R. Soc. B (2011)
like an odd statement given recent reviews showing
that plant genotype identity and genotypic diversity
can explain a large proportion of the variation in diverse
aspects of community and ecosystem-level processes
[12,14]. These studies provided an important and
necessary first step to show that genetic variation can
have extended effects beyond an individual’s pheno-
type. However, the most commonly employed method
used in these experiments has been to collect multiple
genotypes from diverse and often distant environments,
and to replicate these genotypes into single common
environments where extraneous environmental vari-
ation is minimized. Thus, these studies provide little
information about the importance of genetic variation
and diversity compared with other factors that also
influence multi-trophic communities and ecosystem
processes. To address this gap, one must manipulate
or measure other ecological factors, in addition to
intraspecific genetic variation. Then, one could deter-
mine the relative importance of each factor and their
interactions, in terms of the variance explained and/
or the magnitude of effect of different variables for
structuring communities and ecosystem processes.
(a) Manipulative factorial experiments

One way to assess the importance of multiple factors is
to simultaneously manipulate genotypic identity or
diversity and other ecological variables using multi-
factorial experiments or multiple common gardens.
The small number of studies that have taken this
approach show that the relative importance of intra-
specific genetic variation and genotype identity ranges
along the continuum from being among the most
important to being among the least important factors
affecting communities [20,27,40,48–51]. Because
the number of studies that have manipulated intra-
specific genetic variation alongside other ecological
factors are small, we cannot generalize about what
the relative effects that genetic versus other ecological
factors have on mediating community and ecosystem
dynamics. It is also becoming clear that the relative
importance of genetic variation and genotype identity
can depend upon the spatial scale that is studied
[20,51,52]. More manipulative experiments are
needed to fill this important gap. In meeting this chal-
lenge, an added precedence should be placed on
manipulating multiple factors and at multiple levels,
rather than just their presence/absence, so that results
can provide insight over the biologically relevant
range of ecological factors and illuminate nonlinear
and non-additive effects of multiple factors [53].
Ecological factors that could be manipulated in such
experiments include: intensities of intra- and inter-
specific interactions, disturbance, trophic complexity,
species diversity and abiotic environmental conditions.

In addition to the factors listed above, future
multi-factorial experiments should also consider the
ecological effects of genetic variation in multiple
species. Currently, we do not know how important
genetic interactions between species are in structuring
natural communities because most community gen-
etics research has only manipulated genotype identity
and genotypic diversity of one species. However,
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interactions between genotypes of multiple species at
different trophic levels (i.e. genotype � genotype inter-
actions; G � G) can also shape the ecology of
communities [5] and ultimately determine the direc-
tion and rate of coevolutionary dynamics [54]. The
nature of such G � G interactions can also be
influenced by various factors of the environment,
thus resulting in genotype � genotype � environment
interactions (G � G � E), which has formed the
foundation of Thompson’s Geographic mosaic of
coevolution [54]. Studies that simultaneously mani-
pulate the genetic composition of multiple species and
other environmental attributes will be a necessary first
step towards understanding the importance of G �
G � E interactions on demography and community
structure (e.g. [55,56]).
(b) Measuring relative importance: combining

approaches

After manipulating or measuring various factors using
factorial, common garden or reciprocal transplant
designs, the next step would be to tease apart the
relative contribution that genetic versus additional eco-
logical factors have on community assembly and
ecosystem dynamics. Within a single study, a straight-
forward way to do this is to measure the relative
amount of variance explained by each factor in terms
of the coefficient of determination (r2). When using
general linear models, r2 can be measured as the
ratio of the treatment sums-of-squares (SS) divided
by the total SS. A similar approach can be used to cal-
culate r2 when using restricted maximum likelihood
methods, which calculate the variance explained by
each random effect included in the model. To
determine the relative importance of each factor
manipulated, it is first necessary to treat all factors
(i.e. fixed and random alike) as ‘random’ and to use
the variance component for each factor to estimate r2.
For example, if aphid genotype and the presence of
predators are manipulated to assess their relative effects
on plant performance, all factors would be treated as
random, and the variance explained by predators
would be calculated as: (variance owing to predators)/
(total variance), where total variance is the sum of all
variance components. One could also measure effect
sizes of specific factors using meta-analytical statistics
(see [14,21,40]).

Aside from the tremendous amount of work that
these types of studies entail, two obvious limitations
to these approaches include: (i) deciding what eco-
logical factors are relevant and thus should be
manipulated; and (ii) determining how to measure rela-
tive effect sizes of complex ecological interactions (such
as multiple species interactions). We suggest that com-
bining the experimental approaches described above
with structural equation modelling (SEM) could resolve
these limitations. SEM is a statistical technique used to
estimate relationships among variables and in many
ways is similar to multiple regression, path, principal
components and factor analyses [57]. However, SEM
has some benefits over these other statistical approaches
that are particularly relevant here. For instance, with
SEM one can test the descriptive ability of different
Phil. Trans. R. Soc. B (2011)
models to determine which factors are most important,
and one can simultaneously construct and determine
the effect sizes of unmeasured (a.k.a. latent) variables
(e.g. species interactions). The use of SEM in ecologi-
cal and evolutionary field studies is growing, and
represents an exciting and important avenue of future
community genetics research (i.e. [58–61]).
3. HOW DOES MICROEVOLUTION INFLUENCE
COMMUNITY ECOLOGY?
The diversification of species and their traits over
macroevolutionary timescales influences what species
can coexist in an area and the nature of their inter-
actions [62–64]. Evolution over shorter timescales
(i.e. microevolution) can also affect ecological processes
and patterns within communities, but its role is not well
understood [10,42,45,65]. Three general observations
suggest that ongoing microevolution could play a
prominent role in shaping complex communities:
(i) heritable intraspecific variation in many different
types of traits can have community and ecosystem-
level consequences [12,20,66]; (ii) populations conti-
nually evolve and the rate of this evolution is often
faster than originally appreciated [67–69]; and (iii)
theoretical models and microcosm experiments of
simple predator–prey communities show that evolution
can affect ecological dynamics and species coexistence
[44,70–74]. Despite these advances, it is not yet clear
whether such phenomena occur in nature, where
communities are infinitely more complex. To better
understand the role that microevolution plays in
shaping community ecology, we advocate two
complementary experimental methods that can be
implemented in both field and laboratory settings.

(a) Common environment approaches

A straightforward method to experimentally test the
ecological consequences of microevolution involves
testing the effect that recent evolutionary divergence
within a species has on community or ecosystem prop-
erties. This method is most informative when there is
a priori knowledge about how and why specific traits
have diverged between two or more populations.
Using this method, replicate individuals from diverged
populations can be placed into a common environment
and their impact on a natural or experimentally com-
posed community can be quantified and compared. A
weakness of this approach is that the ecological effects
observed in a ‘common’ environment may not represent
what has or will occur in the natural environment, in
part, because coupled evolutionary change in other
members of the community is not accounted for and
the ‘common’ environment may not represent the nat-
ural environment of all diverged populations. Studies
replicated in multiple environments, such as the
respective environments of each divergent population,
could help alleviate this weakness.

This approach has been employed to understand
how recently diverged fish populations affect
aquatic communities and ecosystems [39–41,75].
For example, Trinidadian guppies rapidly evolve mor-
phological differences in response to variation in
predation pressure [76], and mesocosm experiments
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and observations in native environments show that
these diverged phenotypes affect aquatic invertebrates
and algae biomass, and have cascading effects on
ecosystem properties, such as nutrient flux and
decomposition rate [40]. Similar approaches could
be used to examine the ecological effects of divergence
in plant and arthropod herbivores (e.g. [24]).

Common garden experiments can also be used to
examine the ecological effects of evolution within a
single population by implementing a ‘resurrection pro-
tocol’ [77]. Resurrection protocols can be used for
organisms that have dormant stages (i.e. plants and
some invertebrate species), and in these experiments
large numbers of seeds (or eggs) that represent the
population genetic make-up are collected from the
same population at multiple time points and then
simultaneously ‘revived’ in one or more common
environments. In this way, the community effects of
evolution within a single population can be assessed.

(b) Experimental evolution and temporal

changes in communities

The clearest evidence for the effects of evolution on
temporal changes within communities and ecosystems
will come from experiments that actually observe or
manipulate evolution within populations and measure
associated ecological changes. Observational studies
that use morphological or molecular techniques to
quantify evolution in natural populations and attempt
to correlate evolution in one or more species to changes
in community ecology are promising [78]; however,
teasing apart the role of evolution versus concurrent
ecological changes in the focal population (e.g.
population size) as well as abiotic changes in the
environment can be challenging [68]. Controlled evo-
lution experiments are better able to account for
environmental variation, changes in population size
and evolution of other species in the community.
Using selection experiments, one can manipulate evo-
lution in species that have short generation times by
either exposing populations to different abiotic or
biotic environments for several generations and allow-
ing evolution by natural selection to proceed, or by
artificially selecting for divergent phenotypes [79].
As populations evolve, one can follow changes in associ-
ated communities and ecosystem properties, as well as
the phenotypic traits and alleles that are correlated
with any ecological changes. Experiments in the field
can also directly simulate evolution by manually shifting
the mean phenotypic trait value in populations over
time; in doing so, the ecological effects of a dynamic
evolutionary process can be observed. Although each
of the approaches described above has various strengths
and weaknesses, the implementation of the different
approaches in a variety of systems will help to fill the
existing gap in our current knowledge about whether
evolution drives ecological changes in nature.
4. WHAT ARE THE PHENOTYPIC AND GENETIC
MECHANISMS AFFECTING COMMUNITIES AND
ECOSYSTEMS?
If genetic variation and evolution frequently affect
community and ecosystem-level processes and
Phil. Trans. R. Soc. B (2011)
patterns, then it will be important to identify the key
genetic and phenotypic mechanisms responsible for
these effects. With this information it will be possible
to determine whether certain genes and phenotypic
traits have similar consequences in diverse commu-
nities and ecosystems, and whether certain traits are
more likely to evolve and affect ecological dynamics.
In essence, a more mechanistic approach might enable
us to make predictions about when a community
genetics approach is warranted [5,11,61,80,81].

Progress towards a mechanistic understanding of
community and ecosystem genetics can follow one of
two paths. Either one can identify phenotypic traits that
have significant affects on community and ecosystem
processes, and then pinpoint the genetic mech-
anisms underlying such traits (‘top-down’ approach).
Alternatively, one can study gene expression directly
to identify candidate genes that show patterns of
altered expression associated with ecological effects
of interest (‘bottom-up’ approach). There has been
considerable progress towards identifying ecologically
relevant phenotypic traits, but unravelling genotype to
phenotype links is still in its infancy.
(a) Top-down approach: identifying phenotypic

traits of interest

A necessary first step towards unravelling genotype to
phenotype links using the top-down approach is to
identify phenotypic traits that influence community
and ecosystem properties. Recent studies have
identified many different types of traits that genetically
vary and predict variation in community and
ecosystem attributes, such as morphological, life
history, chemical and physiological traits [18,20,24,
25,28,48,82–84]. When phenotypic variation in
specific traits is found to have important ecological
effects, then one of several genetic approaches can be
used to identify the gene(s) underlying these traits.

In the case of cottonwoods, Tom Whitham and col-
leagues have identified a quantitative trait locus (QTL)
that is known to contain candidate genes that contrib-
ute to condensed tannin production—a class of
secondary chemicals that has been shown to influence
several cottonwood community and ecosystem
properties [12,13,85]. To complete the genotype to
phenotype to community/ecosystem link, the presum-
able next steps would be to fine map the QTL, identify
and clone candidate genes for condensed tannin
production, and to identify specific nucleotide poly-
morphisms within exons and promoter regions that
covary with variation in tannin production and the
associated community and ecosystem phenotypes.
This would provide an elegant link between variation
at specific regions of the genome, and community
and ecosystem processes.

Using a functional genetics approach, Ian Baldwin
and colleagues have also studied the genetic mechan-
isms that mediate multi-trophic species interactions.
After identifying key biosynthetic pathways in plants
that mediate interactions between plants and insects,
these authors have created genetically modified trans-
genic lines in which single genes are silenced. These
plants are then planted into the field, and their
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phenotypes and species interactions are compared
with those of wild-type plants (i.e. [86–88]). This
technique has successfully identified specific genes
that mediate species interactions in the field.

These examples show that genomic approaches to
community and/or ecosystem genetics are feasible in
some systems. These top-down approaches, unfortu-
nately, also have limitations that might limit their
utility in non-model organisms. First, QTL analyses
are time-consuming and expensive to implement
because they require a mapping population with a
dense linkage map based on many molecular markers.
Even with these resources, it can be difficult to find a
statistically significant correlation between the pheno-
type of interest and genetic variation in one or more
narrow chromosomal regions (i.e. locus with a few
genes) containing a candidate gene. As such, many
QTLs with moderate and minor effects go undetected
[89]. Second, all top-down approaches require a priori
knowledge of the type of gene or biosynthetic pathway
thought to mediate community or ecosystem path-
ways. Given the complexity of genetic regulation and
pathways within organisms [90], many key genes
and pathways are likely to be ignored if we rely solely
on a priori predictions. Third, functional genetic
approaches that target single genes will probably miss
pleiotropic effects resulting from interactions with
other genes that are also affected by selection and
random mutational processes. Finally, all of these
approaches rely heavily on genomic tools developed
for model organisms; however, most ecologists do
not study model organisms or their close relatives.
(b) Bottom-up approach: using next-generation

sequencing technologies

Building a genotype to phenotype map has been
notoriously difficult [89], but we believe that
recent advances in molecular biology provide new
opportunities for examining the genetic mechanisms
underlying traits that affect biodiversity and ecosys-
tem processes. By combining ultra-high throughput
(a.k.a. ‘next generation’) sequencing technologies
(454/Roche, Solexa/Illumina, SOLiD/ABI and
Helicos/Biosciences) with recent advances in bio-
informatics, these approaches are now available for
studying sequence variation and transcriptome
analysis (i.e. gene expression) in virtually any organ-
ism, and often at a much lower cost than traditional
capillary-based or Sanger’s sequencing and micro-
array methods [91–93]. Recently, these technologies
have been successfully employed to identify genes
within non-model organisms that are differentially
expressed between species [94,95], between genotypes
within species exposed to different herbicide treatments
[91] and between individuals from the same genotype
exposed to different pathogen environments [95].

Studies that employ these next-generation seq-
uencing technologies can be used to transform our
understanding of how genetic variation mediates
community and ecosystem processes (‘bottom-up
approach’). For example, to understand why certain
genotypes with distinct phenotypes influence commu-
nity and ecosystem processes more than others, these
Phil. Trans. R. Soc. B (2011)
distinct genotypes can be exposed to different ecologi-
cal environments. Once such experimental designs
have been established, RNA can be extracted from
genotypes of interest that were exposed to different
treatments, and ultra-high sequencing technologies
and bioinformatics can be used to identify genes that
are differentially expressed between genotypes and
between treatments. The function of these genes can
then be determined using existing databases
(e.g. National Center for Biotechnology Information,
The Arabidopsis Information Resource, Gene
Ontology) and recently developed software specifically
designed for transcriptome data and cross platform
analysis [91,96]. Finally, one can simultaneously
measure ecologically relevant phenotypic traits and
then correlate variation in these ‘traits’ with gene
expression profiles, similar to what has been done
with QTL and microarray analyses [97]. In this way it
is possible to identify candidate genes that are most eco-
logically significant. Once these candidate genes are
identified, ideally one would explicitly test the phenoty-
pic and ecological effects of these genes using functional
genomic approaches.

What is particularly appealing about this sequen-
cing and trait-based bottom-up approach is that we
do not need a priori knowledge about the types
of genes involved in the expression of phenotypes
of interest, and it will allow us to identify multiple
non-exclusive candidate genes that simultaneously
affect species interactions, biodiversity and contrib-
ute to the effects of biodiversity on ecosystem
functioning. Therefore, these bottom-up approaches
might be better suited to embracing the quantita-
tive variation that contributes to most observed
heritable variation in nature. Most importantly, this
approach can be used in model and non-model
organisms alike.
5. CONCLUDING REMARKS
The first generation of community genetics research
has shown that intraspecific genetic variation can be
an important factor determining community and eco-
system processes. Genetics and microevolution of
populations should also be considered as factors
affecting community ecology, and by considering
these factors in experimental designs, we will be able
to assess their relative importance in structuring com-
munities and ecosystems. A second generation of
research is now needed that includes a mechanistic
genes-to-ecosystem understanding of natural systems,
where the biological importance of the ecological
and ecosystem-level consequences of genetic variation
and evolution are rigorously assessed in a wide array
of ecosystems, including complex tropical systems
(e.g. [30]). Broad-scale empirical and theoretical
(e.g. [74]) efforts that address the relative importance
of inter- and intra-specific effects and variation on
community processes should also try to complement
these fine-scale genetic mechanistic approaches [61].
As such, this second generation of research will require
an interdisciplinary toolkit in model and non-model
organisms and will help to build a cohesive and
predictive framework between community ecology,

http://rstb.royalsocietypublishing.org/


1458 E. I. Hersch-Green et al. Review. Future directions of community genetics

 on March 28, 2011rstb.royalsocietypublishing.orgDownloaded from 
evolutionary biology, genetics and genomics. In other
words, it will move us towards a modern synthesis of
evolutionary ecology.

We thank the editors for extending the invitation to submit this
article and the input from two anonymous reviewers. This
work was supported by grants from the National Science
Foundation DEB-0919869 and DEB-0950486 to M.T.J.J.
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